Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Mol Sci ; 23(17)2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-2023744

ABSTRACT

Understanding the biological mechanisms underlying the pH-dependent nature of FcRn binding, as well as the various factors influencing the affinity to FcRn, was concurrent with the arrival of the first recombinant IgG monoclonal antibodies (mAbs) and IgG Fc-fusion proteins in clinical practice. IgG Fc-FcRn became a central subject of interest for the development of these drugs for the comfort of patients and good clinical responses. In this review, we describe (i) mAb mutations close to and outside the FcRn binding site, increasing the affinity for FcRn at acidic pH and leading to enhanced mAb half-life and biodistribution, and (ii) mAb mutations increasing the affinity for FcRn at acidic and neutral pH, blocking FcRn binding and resulting, in vivo, in endogenous IgG degradation. Mutations modifying FcRn binding are discussed in association with pH-dependent modulation of antigen binding and (iii) anti-FcRn mAbs, two of the latest innovations in anti-FcRn mAbs leading to endogenous IgG depletion. We discuss the pharmacological effects, the biological consequences, and advantages of targeting IgG-FcRn interactions and their application in human therapeutics.


Subject(s)
Antibodies, Monoclonal , Receptors, Fc , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/therapeutic use , Histocompatibility Antigens Class I , Humans , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Receptors, Fc/metabolism , Tissue Distribution
2.
BioPharm International ; 35(5), 2022.
Article in English | Scopus | ID: covidwho-2012705
3.
Int J Mol Sci ; 22(19)2021 Sep 25.
Article in English | MEDLINE | ID: covidwho-1855648

ABSTRACT

Being one of the main proteins in the human body and many animal species, albumin plays a decisive role in the transport of various ions-electrically neutral and charged molecules-and in maintaining the colloidal osmotic pressure of the blood. Albumin is able to bind to almost all known drugs, as well as many nutraceuticals and toxic substances, largely determining their pharmaco- and toxicokinetics. Albumin of humans and respective representatives in cattle and rodents have their own structural features that determine species differences in functional properties. However, albumin is not only passive, but also an active participant of pharmacokinetic and toxicokinetic processes, possessing a number of enzymatic activities. Numerous experiments have shown esterase or pseudoesterase activity of albumin towards a number of endogeneous and exogeneous esters. Due to the free thiol group of Cys34, albumin can serve as a trap for reactive oxygen and nitrogen species, thus participating in redox processes. Glycated albumin makes a significant contribution to the pathogenesis of diabetes and other diseases. The interaction of albumin with blood cells, blood vessels and tissue cells outside the vascular bed is of great importance. Interactions with endothelial glycocalyx and vascular endothelial cells largely determine the integrative role of albumin. This review considers the esterase, antioxidant, transporting and signaling properties of albumin, as well as its structural and functional modifications and their significance in the pathogenesis of certain diseases.


Subject(s)
Antioxidants/metabolism , Esterases/metabolism , Protein Transport/physiology , Serum Albumin/metabolism , Signal Transduction/physiology , Animals , Humans , Oxidation-Reduction
4.
Front Mol Neurosci ; 15: 895429, 2022.
Article in English | MEDLINE | ID: covidwho-1834482

ABSTRACT

Disruption of the blood-brain barrier (BBB) causes or contributes to neuronal dysfunction and several central nervous system (CNS) disorders. Wnt/ß-catenin signaling is essential for maintaining the integrity of the adult BBB in physiological and pathological conditions, including stroke. However, how the impairment of the endothelial Wnt/ß-catenin signaling results in BBB breakdown remains unclear. Furthermore, the individual contributions of different BBB permeability-inducing mechanisms, including intercellular junction damage, endothelial transcytosis, and fenestration, remains unexplored. Here, we induced ß-catenin endothelial-specific conditional knockout (ECKO) in adult mice and determined its impact on BBB permeability and the underlying mechanism. ß-catenin ECKO reduced the levels of active ß-catenin and the mRNA levels of Wnt target genes in mice, indicating downregulation of endothelial Wnt/ß-catenin signaling. ß-catenin ECKO mice displayed severe and widespread leakage of plasma IgG and albumin into the cerebral cortex, which was absent in wild-type controls. Mechanistically, both the paracellular and transcellular transport routes were disrupted in ß-catenin ECKO mice. First, ß-catenin ECKO reduced the tight junction protein levels and disrupted the intercellular junction ultrastructure in the brain endothelium. Second, ß-catenin ECKO substantially increased the number of endothelial vesicles and caveolae-mediated transcytosis through downregulating Mfsd2a and upregulating caveolin-1 expression. Interestingly, fenestration and upregulated expression of the fenestration marker Plvap were not observed in ß-catenin ECKO mice. Overall, our study reveals that endothelial Wnt/ß-catenin signaling maintains adult BBB integrity via regulating the paracellular as well as transcellular permeability. These findings may have broad applications in understanding and treatment of CNS disorders involving BBB disruption.

5.
Open Forum Infectious Diseases ; 8(SUPPL 1):S634-S635, 2021.
Article in English | EMBASE | ID: covidwho-1746329

ABSTRACT

Background. ADG20 is a fully human IgG1 monoclonal antibody engineered to have potent and broad neutralization against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and additional SARS-like CoVs with pandemic potential and an extended half-life. A QSP/PBPK model was constructed using ADG20-specific physiochemical properties and published non-human primate (NHP) and human PK data for other antibodies;it was used to a priori predict and confirm NHP and human PK. Methods. An existing QSP/PBPK model was modified to include 3 distinct lung sub-compartments: upper airway, lower airway, and alveolar tissue (Figure A). Each sub-compartment (Figure B) contained an epithelial lining fluid (ELF) space (Figure B). The model was fit separately to digitized NHP and human serum PK data for 7 extended half-life antibodies to estimate the apparent neonatal Fc receptor (FcRn) binding affinity (KD,FcRn) and bioavailability by drug. Nasopharyngeal swab (upper airway) and lung (lower airway) ELF PK data from 4 additional antibodies were used to optimize a single rate constant for transcytosis in lung. Patches of positive charge was a covariate on the rate of pinocytosis of antibody entry and exit from the endosomal space (Figure B). Observed NHP (ADG20 10 mg/kg IM) and human (ADG20 300 mg IM) PK data collected over the initial 21 days post dose were compared with model forecasts from a 1000-iteration simulation. Results. The distribution of fitted NHP KD,FcRn provided accurate predictions of NHP serum PK data (Figure C). NHP ADG20 KD,FcRn was optimized to be 35.7 nM and human ADG20 KD,FcRn (9.55 nM) was derived using a mean NHP:human KD,FcRn ratio of 3.74 across antibodies. Model-based simulated human serum PK data using inter-subject variability from NHP and actual weight distribution from an ongoing Phase 1 study aligned with initial 21-day data (Figure D). Using an adult CDC weight distribution (45-150 kg), the simulated median exceeded 74 days. Conclusion. The QSP/PBPK model a priori predicted NHP and human ADG20 PK. This innovative QSP-based modeling and simulation approach enabled the evaluation of candidate dose regimens prior to the availability of PK data, supporting the rapid advancement of the ADG20 clinical program during the COVID-19 pandemic.

6.
MAbs ; 13(1): 1987180, 2021.
Article in English | MEDLINE | ID: covidwho-1483313

ABSTRACT

The global health crisis and economic tolls of COVID-19 necessitate a panoply of strategies to treat SARS-CoV-2 infection. To date, few treatment options exist, although neutralizing antibodies against the spike glycoprotein have proven to be effective. Because infection is initiated at the mucosa and propagates mainly at this site throughout the course of the disease, blocking the virus at the mucosal milieu should be effective. However, administration of biologics to the mucosa presents a substantial challenge. Here, we describe bifunctional molecules combining single-domain variable regions that bind to the polymeric Ig receptor (pIgR) and to the SARS-CoV-2 spike protein via addition of the ACE2 extracellular domain (ECD). The hypothesis behind this design is that pIgR will transport the molecule from the circulation to the mucosal surface where the ACE ECD would act as a decoy receptor for the nCoV2. The bifunctional molecules bind SARS-Cov-2 spike glycoprotein in vitro and efficiently transcytose across the lung epithelium in human tissue-based analyses. Designs featuring ACE2 tethered to the C-terminus of the Fc do not induce antibody-dependent cytotoxicity against pIgR-expressing cells. These molecules thus represent a potential therapeutic modality for systemic administration of neutralizing anti-SARS-CoV-2 molecules to the mucosa.


Subject(s)
Antibodies, Viral , COVID-19 Drug Treatment , Receptors, Polymeric Immunoglobulin , SARS-CoV-2/immunology , Single-Chain Antibodies , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Antibodies, Viral/pharmacology , CHO Cells , COVID-19/genetics , COVID-19/immunology , Cricetulus , Dogs , Female , Humans , Madin Darby Canine Kidney Cells , Mice , Mouth Mucosa/immunology , Protein Domains , Receptors, Polymeric Immunoglobulin/genetics , Receptors, Polymeric Immunoglobulin/immunology , Receptors, Polymeric Immunoglobulin/therapeutic use , SARS-CoV-2/genetics , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Single-Chain Antibodies/pharmacokinetics , Single-Chain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Swine
7.
Front Immunol ; 12: 636966, 2021.
Article in English | MEDLINE | ID: covidwho-1438414

ABSTRACT

Since 2003, the world has been confronted with three new betacoronaviruses that cause human respiratory infections: SARS-CoV, which causes severe acute respiratory syndrome (SARS), MERS-CoV, which causes Middle East respiratory syndrome (MERS), and SARS-CoV-2, which causes Coronavirus Disease 2019 (COVID-19). The mechanisms of coronavirus transmission and dissemination in the human body determine the diagnostic and therapeutic strategies. An important problem is the possibility that viral particles overcome tissue barriers such as the intestine, respiratory tract, blood-brain barrier, and placenta. In this work, we will 1) consider the issue of endocytosis and the possibility of transcytosis and paracellular trafficking of coronaviruses across tissue barriers with an emphasis on the intestinal epithelium; 2) discuss the possibility of antibody-mediated transcytosis of opsonized viruses due to complexes of immunoglobulins with their receptors; 3) assess the possibility of the virus transfer into extracellular vesicles during intracellular transport; and 4) describe the clinical significance of these processes. Models of the intestinal epithelium and other barrier tissues for in vitro transcytosis studies will also be briefly characterized.


Subject(s)
Endocytosis , Intestinal Mucosa/virology , SARS-CoV-2/metabolism , Antibodies, Viral/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/transmission , COVID-19/virology , Clinical Trials as Topic , Endocytosis/drug effects , Humans , Intestinal Mucosa/metabolism , Models, Biological , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Tight Junctions/metabolism , Tight Junctions/virology , Transcytosis/drug effects , Virus Attachment , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL